
Abusing a hypergraph partitioner for
unweighted graph partitioning

B. O. Fagginger Auer and R. H. Bisseling

Mathematics Institute, Utrecht University,
Budapestlaan 6, 3584 CD, Utrecht, the Netherlands

B.O.FaggingerAuer@uu.nl

R.H.Bisseling@uu.nl

Abstract. We investigate using the Mondriaan matrix partitioner for
unweighted graph partitioning in the communication volume and edge-
cut metrics. By converting the unweighted graphs to appropriate matri-
ces, we measure Mondriaan’s performance as a graph partitioner for the
10th DIMACS challenge on graph partitioning and clustering. We find
that Mondriaan can effectively be used as a graph partitioner: w.r.t. the
edge-cut metric, Mondriaan’s average results are within 21% of the best
known results as listed in Chris Walshaw’s partitioning archive.

1 Introduction

In this paper, we use the Mondriaan matrix partitioner [21] to partition the
graphs from the 10th DIMACS challenge on graph partitioning and clustering
[1]. In this way, we can compare Mondriaan’s performance as a graph partitioner
with the performance of the state-of-the-art partitioners participating in the
challenge.

An undirected graph G is a pair (V,E), with vertices V , and edges E that
are of the form {u, v} for u, v ∈ V with possibly u = v. For vertices v ∈ V , we
denote the set of all of v’s neighbours by

Vv := {u ∈ V | {u, v} ∈ E}.

Note that vertex v is a neighbour of itself precisely when the self-edge {v, v} ∈ E.
Hypergraphs are a generalisation of undirected graphs, where edges can con-

tain an arbitrary number of vertices. A hypergraph G is a pair (V,N), with
vertices V, and nets (or hyperedges) N ; nets are subsets of V that can contain
any number of vertices.

Let ε > 0, k ∈ N, and G = (V,E) be an undirected graph. Then a valid
solution to the graph partitioning problem for partitioning G into k parts with
imbalance ε, is a partitioning Π : V → {1, . . . , k} of the graph’s vertices into k
parts, each part Π−1({i}) containing at most

|Π−1({i})| ≤ (1 + ε)
⌈
|V |
k

⌉
, (1 ≤ i ≤ k) (1)

vertices.
To measure the quality of a valid partitioning we use two different metrics.

The communication volume metric1 [1] is defined by

CV(Π) := max
1≤i≤k

∑
v∈V

Π(v)=i

|Π(Vv) \ {Π(v)}|. (2)

For each vertex v, we determine the number of different parts π(v) in which v
has neighbours, except Π(v). Then, the communication volume is given by the
maximum over i, of the sum of all π(v) for vertices v belonging to part i.

The edge-cut metric [1], defined as

EC(Π) := |{{u, v} ∈ E | Π(u) 6= Π(v)}|, (3)

measures the number of edges that exist between different parts of the partition-
ing Π.

Name Ref. Graph/ Sequential/
hypergraph parallel

Chaco [13] graph sequential
Metis [14] graph sequential
Scotch [18] graph sequential
Jostle [22] graph parallel
ParMetis [16] graph parallel
PT-Scotch [10] graph parallel
hMETIS [15] hypergraph sequential
ML-Part [6] hypergraph sequential
Mondriaan [21] hypergraph sequential
PaToH [8] hypergraph sequential
Parkway [20] hypergraph parallel
Zoltan [12] hypergraph parallel

Table 1. Overview of available software for partitioning (hyper)graphs from [2].

There exist a lot of different (hyper)graph partitioners, which are summarised
in Table 1 from [2]. All partitioners follow a multi-level strategy [5], where the
(hyper)graph is coarsened by generating a matching of the (hyper)graph’s ver-
tices and contracting matched vertices to a single vertex. Doing this recursively
creates a hierarchy of increasingly coarser approximations of the original (hy-
per)graph. After this has been done, an initial partitioning is generated on the
coarsest (hyper)graph in the hierarchy, i.e. the one possessing the smallest num-
ber of vertices. This partitioning is subsequently propagated to the finer (hy-
per)graphs in the hierarchy and refined at each level (e.g. using the Kernighan–
Lin algorithm [17]), until we reach the original (hyper)graph and obtain the final
partitioning.
1 We forgo custom edge and vertex weights and assume they are all equal to one,

because Mondriaan’s hypergraph partitioner does not support net weights.

2

2 Mondriaan

Mondriaan has been designed to partition the matrix and the vectors for a par-
allel sparse matrix–vector multiplication, where a sparse matrix A is multiplied
by a dense input vector v to give a dense output vector u = Av as the re-
sult. First, the matrix partitioning algorithm is executed to minimise the total
communication volume LV(Π) of the partitioning, defined below, and then the
vector partitioning algorithm is executed with the aim of balancing the commu-
nication among the processors. The matrix partitioning itself does not aim to
achieve such balance, but it is not biased in favour of any processor part either.

Name Ref. V N
Column-net [7] {r1, . . . , rm} {{ri | 1 ≤ i ≤ m, ai j 6= 0} | 1 ≤ j ≤ n}
Row-net [7] {c1, . . . , cn} {{cj | 1 ≤ j ≤ n, ai j 6= 0} | 1 ≤ i ≤ m}
Fine-grain [9] {vi j | ai j 6= 0} {{vi j |1 ≤ i ≤ m, ai j 6= 0} | 1 ≤ j ≤ n}| {z }

column nets

∪{{vi j |1 ≤ j ≤ n, ai j 6= 0} | 1 ≤ i ≤ m}| {z }
row nets

Table 2. Available representations of an m × n matrix A = (ai j) by a hypergraph
G = (V,N) in Mondriaan.

Mondriaan uses recursive bipartitioning to split the matrix or its submatrices
repeatedly into two parts, choosing the best of the row or column direction in the
matrix. The current submatrix is translated into a hypergraph by the column-
net or row-net model, respectively (see Table 2). Another possibility is to split
the submatrix based on the fine-grain model, and if desired the best split of
the three methods can be chosen. The outcome of running Mondriaan is a two-
dimensional partitioning of the sparse matrix (i.e., a partitioning where both the
matrix rows and columns are split). The number of parts is not restricted to a
power of two, as Mondriaan can split parts according to a given ratio such as
2:1. After each split, Mondriaan adjusts the weight balancing goals of the new
parts obtained, as the new part that receives the largest fraction of the weight
will need to be stricter in allowing an imbalance during further splits than the
part with the smaller fraction.

If the input vector and output vector can be partitioned independently, the
vector partitioning algorithm usually has enough freedom to achieve a reason-
able communication balancing. If the matrix is square, and both vectors must
be partitioned in the same way, then there is usually little freedom. Sometimes,
the total communication volume must even be increased because of the identical
vector partitioning. If the matrix diagonal has only nonzero elements, however,
the vector partitioning can be achieved without incurring additional communi-
cation by assigning vector components vi and ui to the same processor as the
diagonal matrix element aii. More details on the matrix and vector partitioning

3

can be found in [21]; improved methods for vector partitioning are given in [4],
see also [3].

(a) k = 1 (b) k = 2

(c) k = 4 (d) k = 1024

Fig. 1. Mondriaan 1D column partitioning of the graph fe tooth, modelled as a sparse
matrix cf. Thm. 1, into k = 1, 2, 4, 1024 parts with imbalance ε = 0.03. The rows and
columns of the matrices have been permuted for k > 1 to Separated Block Diagonal
form, see [23].

Here, we will use Mondriaan as a hypergraph partitioner, which can be done
by choosing the column direction in all splits, so that columns are vertices and
rows are nets. This means that we use Mondriaan in one-dimensional mode, as
only rows will be split. Fig. 1 illustrates this splitting procedure. Mondriaan has

4

the option to use its own, native hypergraph bipartitioner, or link to the external
partitioner PaToH [8]. In the present work, we use the native partitioner.

For the graph partitioning challenge posed by DIMACS, we try to fit the
existing software to the aims of the challenge. One could say that this entails
abusing the software, as it was designed for a different purpose, namely ma-
trix and hypergraph partitioning. Using a hypergraph partitioner to partition
graphs will be at the cost of some additional, unnecessary overhead. Still, it will
be interesting to see how the Mondriaan software performs in this unforeseen
mode, and to compare the quality of the generated partitionings to the quality
of partitionings generated by other software, in particular by graph partitioning
packages.

In the situation of the challenge, we can only use the matrix partitioning
of Mondriaan and not the vector partitioning, as the vertex partitioning of the
graph is already completely determined by the column partitioning of the ma-
trix. The balance of the communication will then solely depend on the balance
achieved by the matrix partitioning.

Internally, Mondriaan’s hypergraph partitioner solves the following problem.
For a hypergraph G = (V,N) with vertex weights ζ : V → N, an imbalance
factor ε > 0, and a number of parts k ∈ N, Mondriaan’s partitioner produces a
partitioning Π : V → {1, . . . , k} such that

ζ(Π−1({i})) ≤ (1 + ε)
⌈

ζ(V)
k

⌉
, (1 ≤ i ≤ k), (4)

where the partitioner tries to minimise the (λ− 1)-volume

LV(Π) :=
∑
n∈N

(|Π(n)| − 1). (5)

We will now translate the DIMACS partitioning problems from Sec. 1 to
the hypergraph partitioning problem that Mondriaan is designed to solve, by
creating a suitable hypergraph G, encoded as a sparse matrix A in the row-net
model.

2.1 Minimising communication volume

Let G = (V,E) be a given graph, k ∈ N, and ε > 0. Our aim will be to construct
a matrix A from G such that minimising eq. (5) subject to eq. (4) enforces
minimisation of eq. (2) subject to eq. (1).

To satisfy eq. (1), we need to create one column in A for each vertex in V , such
that the hypergraph represented by A in the row-net model will have V = V .
This is also necessary to have a direct correspondence between partitionings of
the vertices V of the graph and the vertices V of the hypergraph. Setting the
weights ζ of all vertices/matrix columns to 1 will then ensure that eq. (1) is
satisfied if and only if eq. (4) is satisfied.

5

It is a little more tricky to match eq. (2) to eq. (5). Note that because of
the maximum in eq. (2), we are not able to create an equivalent formulation.
However, as

CV(Π) ≤
k∑

i=1

∑
v∈V

Π(v)=i

|Π(Vv) \ {Π(v)}| =
∑
v∈V

|Π(Vv) \ {Π(v)}|, (6)

we can provide an upper bound, which we can use to limit CV(Π). We need
to choose the rows of A, corresponding to nets in the row-net hypergraph G =
(V,N), such that eq. (6) and eq. (5) are in agreement.

For a net n ∈ N , we have that n ⊆ V = V is simply a collection of vertices of
G, so |Π(n)| in eq. (5) equals the number of different parts in which the vertices
of n are contained. In eq. (6) we count, for a vertex v ∈ V , all parts in which v
has a neighbour, except Π(v). Note that this number equals |Π(Vv)\{Π(v)}| =
|Π(Vv ∪ {v})| − 1.

Hence, we should pick N := {Vv ∪ {v} | v ∈ V } as the set of nets, for eq. (6)
and eq. (5) to agree. In the row-net matrix model, this corresponds to letting
A be a matrix with a row for every vertex v ∈ V , filled with nonzeros av v and
av w for all w ∈ Vv \ {v}. Then, for this hypergraph G, we have by eq. (6) that
CV(Π) ≤ LV(Π). Note that since the communication volume is defined as a
maximum, we also have that k CV(Π) ≥ LV(Π).

Theorem 1. Let G = (V,E) be a given graph, k ∈ N, and ε > 0. Let A be the
|V | × |V | matrix with entries

av w :=
{

1 if {v, w} ∈ E or v = w,
0 otherwise,

for v, w ∈ V , and G = (V,N) the hypergraph corresponding to A in the row-net
model with vertex weights ζ(v) = 1 for all v ∈ V.

Then, for every partitioning Π : V → {1, . . . , k}, we have that Π satisfies eq.
(1) if and only if Π satisfies eq. (4), and

1
k

LV(Π) ≤ CV(Π) ≤ LV(Π). (7)

2.2 Minimising edge cut

We will now follow the same procedure as in Sec. 2.1 to construct a matrix A
such that minimising eq. (5) subject to eq. (4) is equivalent to minimising eq.
(3) subject to eq. (1).

As in Sec. 2.1, the columns of A should correspond to the vertices V of G to
ensure that eq. (4) is equivalent to eq. (1).

Eq. (3) simply counts all of G’s edges that contain vertices belonging to two
parts of the partitioning Π. Since every edge contains vertices belonging to at
least one part, and at most two parts, this yields

EC(Π) =
∑
e∈E

(|Π(e)| − 1).

6

Choosing N := E will therefore give us a direct correspondence between eq. (5)
and eq. (3).

Theorem 2. Let G = (V,E) be a given graph, k ∈ N, and ε > 0. Let A be the
|E| × |V | matrix with entries

ae v :=
{

1 if v ∈ e,
0 otherwise,

for e ∈ E, v ∈ V , and G = (V,N) the hypergraph corresponding to A in the
row-net model with vertex weights ζ(v) = 1 for all v ∈ V.

Then, for every partitioning Π : V → {1, . . . , k}, we have that Π satisfies eq.
(1) if and only if Π satisfies eq. (4), and

EC(Π) = LV(Π). (8)

With Thm. 1 and Thm. 2, we know how to translate a given graph G to a
hypergraph that Mondriaan can partition to obtain solutions to the DIMACS
partitioning challenges.

3 Results

We measure Mondriaan’s performance as a graph partitioner by partitioning
graphs from the walshaw/ [19] and matrix/ [11] categories of the DIMACS
test bed [1], see Table 3. This is done by converting the graphs to matrices,
as expressed by Thm. 1 and Thm. 2, and partitioning these matrices with an
updated version of Mondriaan 3.11, using the onedimcol splitting strategy (since
the matrices represent row-net hypergraphs) with the lambda1 metric (cf. eq.
(5)). The imbalance is set to ε = 0.03, the number of parts to k = 2, 4, . . . , 1024,
and we average the recorded communication volumes and edge cuts over 10
(walshaw/) or 5 (matrix/) runs (as Mondriaan uses random tie-breaking) of
the Mondriaan partitioner. Note that we did not take the best result of the set
of runs, as we are interested in the average performance of Mondriaan. All results
were recorded on a dual quad-core AMD Opteron 2378 system with 32GiB of
main memory and can be found in Tables 4–6 and Figures 2 and 3.

Results for graphs from the walshaw/ category for the edge-cut metric, Table
5, can directly be compared with the best known partitionings with 3% imbalance
from http://staffweb.cms.gre.ac.uk/∼wc06/partition/ [19]. Compared to
the results retrieved on November 2, 2011, we find that Mondriaan performs
rather well, except for the graph add32. If we take the average of the relative edge
cuts over all graphs in walshaw/ and all values k = 2, 4, . . . , 64, then Mondriaan
performs 21% worse than the best results from [19], and only 16% worse if add32
is excluded. It should be noted that we compare the average edge cut obtained
by Mondriaan to the best known edge cuts from [19].

7

G |V | |E|
add20 2,395 7,462
data 2,851 15,093
3elt 4,720 13,722
uk 4,824 6,837
add32 4,960 9,462
bcsstk33 8,738 291,583
whitaker3 9,800 28,989
crack 10,240 30,380
wing nodal 10,937 75,488
fe 4elt2 11,143 32,818
vibrobox 12,328 165,250
bcsstk29 13,992 302,748
4elt 15,606 45,878
fe sphere 16,386 49,152
cti 16,840 48,232
memplus 17,758 54,196
cs4 22,499 43,858
bcsstk30 28,924 1,007,284
bcsstk31 35,588 572,914
fe pwt 36,519 144,794
bcsstk32 44,609 985,046
fe body 45,087 163,734
t60k 60,005 89,440
wing 62,032 121,544
brack2 62,631 366,559
finan512 74,752 261,120
fe tooth 78,136 452,591
fe rotor 99,617 662,431
598a 110,971 741,934
fe ocean 143,437 409,593
144 144,649 1,074,393
wave 156,317 1,059,331
m14b 214,765 1,679,018
auto 448,695 3,314,611

G |V | |E|
af shell9 504,855 8,542,010
audikw1 943,695 38,354,076
ldoor 952,203 22,785,136
ecology2 999,999 1,997,996
ecology1 1,000,000 1,998,000
thermal2 1,227,087 3,676,134
af shell10 1,508,065 25,582,130
G3 circuit 1,585,478 3,037,674
kkt power 2,063,494 6,482,320
nlpkkt120 3,542,400 46,651,696
cage15 5,154,859 47,022,346
nlpkkt160 8,345,600 110,586,256
nlpkkt200 16,240,000 215,992,816

Table 3. Graphs G = (V, E) from the 10th DIMACS challenge [1] from the walshaw/

(left) and matrix/ (right) categories.

8

G 2 4 8 16 32 64 128 256 512 1024

add20 80 116 142 163 208 - - - - -
data 66 92 95 87 74 - - - - -
3elt 47 68 69 74 60 87 - - - -
uk 21 32 42 40 34 26 - - - -
add32 16 32 35 29 27 27 - - - -
bcsstk33 494 734 796 817 635 495 384 375 - -
whitaker3 65 132 112 107 82 68 - - - -
crack 101 115 131 115 84 71 53 101 121 69
wing nodal 460 688 564 494 395 273 194 150 - -
fe 4elt2 66 97 113 103 84 91 52 - - -
vibrobox 1,075 1,155 1,047 962 713 560 - 568 - -
bcsstk29 187 384 398 365 273 245 287 - - -
4elt 74 115 106 106 108 81 64 - - -
fe sphere 204 223 192 152 119 92 69 128 - -
cti 272 560 574 431 319 221 147 151 - -
memplus 2,608 1,850 1,113 792 732 662 561 692 - -
cs4 330 520 442 326 244 171 112 79 102 -
bcsstk30 317 675 665 787 738 639 558 489 425 -
bcsstk31 406 564 582 562 515 439 338 293 267 -
fe pwt 120 145 173 174 182 147 113 157 102 -
bcsstk32 602 785 885 794 629 505 389 349 298 -
fe body 124 212 234 212 173 145 128 99 90 134
t60k 74 158 173 154 137 113 82 62 46 62
wing 726 987 801 644 480 337 227 148 218 -
brack2 238 661 836 739 619 499 398 309 259 -
finan512 94 123 155 156 88 175 175 206 188 149
fe tooth 1,299 1,393 1,429 1,224 946 807 582 398 275 -
fe rotor 574 1,467 1,454 1,297 1,028 813 640 445 379 -
598a 657 1,557 1,570 1,563 1,230 940 740 541 368 283
fe ocean 274 918 1,172 1,184 971 714 514 354 242 164
144 1,719 2,785 2,340 1,743 1,608 1,325 1,007 675 448 303
wave 2,505 3,266 2,954 2,411 1,790 1,333 906 605 412 284
m14b 955 2,338 2,404 2,234 1,670 1,317 1,087 827 583 390
auto 2,580 5,059 5,177 4,406 3,287 2,581 1,775 1,182 800 545

Table 4. Average communication volume, eq. (2), over 10 Mondriaan runs, for graphs
from the walshaw/ category, Table 3, divided into k = 2, 4, . . . , 1024 parts with imbal-
ance ε = 0.03. A ‘-’ indicates that Mondriaan was unable to generate a partitioning
satisfying the balancing requirement, eq. (1).

9

G 2 4 8 16 32 64 128 256 512 1024

add20 701 1,239 1,860 2,328 2,742 - - - - -
data 210 428 770 1,303 2,080 - - - - -
3elt 92 221 391 662 1,108 2,008 - - - -
uk 22 53 113 190 318 544 - - - -
add32 48 109 201 298 493 800 - - - -
bcsstk33 10,082 22,289 39,695 59,426 84,167 115,601 150,047 197,525 - -
whitaker3 130 395 731 1,213 1,879 2,815 - - - -
crack 197 407 767 1,223 1,915 2,846 4,211 8,861 27,546 28,206
wing nodal 1,750 3,864 6,078 9,206 13,142 17,653 23,074 30,739 - -
fe 4elt2 130 356 658 1,140 1,842 2,866 4,144 - - -
vibrobox 11,456 21,559 31,780 39,980 48,792 56,222 70,224 100,660 - -
bcsstk29 3,009 8,719 17,760 27,286 41,233 61,076 98,161 - - -
4elt 144 361 630 1,100 1,819 2,964 4,724 - - -
fe sphere 426 844 1,308 2,006 2,902 4,173 5,918 11,041 - -
cti 346 1,011 1,882 3,075 4,400 6,136 8,479 12,184 - -
memplus 5,788 9,829 12,433 14,345 16,081 18,052 21,185 23,664 - -
cs4 402 1,082 1,717 2,484 3,448 4,688 6,234 8,267 15,904 -
bcsstk30 6,483 17,522 38,673 80,951 128,679 189,268 272,306 381,846 527,735 -
bcsstk31 2,880 7,935 15,805 27,376 44,942 67,652 98,515 140,666 199,171 -
fe pwt 367 796 1,577 3,179 6,112 9,305 12,993 18,544 26,003 -
bcsstk32 5,657 11,674 25,134 43,940 69,459 105,490 154,161 225,289 317,952 -
fe body 294 735 1,331 2,184 3,631 5,835 9,403 14,507 22,128 48,374
t60k 82 259 548 994 1,632 2,547 3,813 5,565 8,152 12,087
wing 912 1,921 2,966 4,551 6,628 9,044 12,010 15,890 24,206 -
brack2 713 2,972 7,594 12,697 19,722 29,070 42,271 60,056 84,770 -
finan512 162 510 1,125 1,872 2,896 11,089 22,030 39,294 57,481 75,316
fe tooth 4,140 7,892 13,284 20,226 28,577 39,601 53,141 71,917 96,280 -
fe rotor 2,119 8,012 14,289 23,311 35,628 52,139 73,975 102,663 140,333 -
598a 2,457 8,343 17,031 28,841 44,104 63,806 88,039 118,654 157,227 209,672
fe ocean 329 1,918 4,720 8,832 14,401 22,074 30,787 42,182 57,226 75,811
144 6,812 17,251 28,688 43,192 63,041 87,927 119,688 161,019 214,115 280,451
wave 9,206 20,999 34,177 49,883 69,756 95,549 128,205 169,570 220,677 282,531
m14b 3,973 13,688 27,861 48,599 75,484 109,861 154,290 212,062 286,225 381,217
auto 10,364 28,026 52,424 89,759 134,990 193,265 267,282 360,509 476,470 621,578

Table 5. Average edge cut, eq. (3), over 10 Mondriaan runs, for graphs from the
walshaw/ category, Table 3, divided into k = 2, 4, . . . , 1024 parts with imbalance ε =
0.03. A ‘-’ indicates that Mondriaan was unable to generate a partitioning satisfying
the balancing requirement, eq. (1).

10

G
2

4
8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

a
f
s
h
e
l
l
9

1
,1

5
6

1
,3

7
2

2
,0

0
8

1
,9

1
8

1
,3

5
3

1
,1

9
6

8
4
6

6
4
0

4
6
5

3
4
4

a
u
d
i
k
w
1

5
,8

2
2

1
2
,7

0
2

1
4
,2

7
9

1
5
,2

4
8

1
1
,3

5
1

9
,0

4
3

6
,4

4
9

4
,2

9
2

3
,0

3
4

2
,0

8
5

l
d
o
o
r

1
,9

8
5

2
,2

9
5

2
,6

6
0

2
,4

9
3

1
,9

8
0

1
,8

0
9

1
,2

8
6

1
,0

3
8

7
5
5

6
1
9

e
c
o
l
o
g
y
2

1
,0

3
1

1
,0

9
7

1
,3

8
4

1
,0

8
7

8
2
1

6
3
2

4
6
7

3
2
4

2
4
4

1
7
1

e
c
o
l
o
g
y
1

1
,0

1
7

1
,1

1
7

1
,3

3
2

1
,0

8
6

8
4
6

6
6
8

4
9
0

3
3
4

2
5
3

1
6
9

t
h
e
r
m
a
l
2

6
2
0

1
,0

3
3

1
,0

5
0

1
,0

8
5

1
,0

2
0

7
3
0

5
9
4

4
4
7

3
0
8

2
2
8

a
f
s
h
e
l
l
1
0

2
,8

6
2

3
,4

0
0

4
,0

1
3

3
,3

9
4

2
,7

0
8

2
,0

6
8

1
,6

2
9

1
,1

2
9

8
4
1

5
9
9

G
3
c
i
r
c
u
i
t

1
,2

1
5

2
,0

2
5

2
,1

0
4

1
,6

8
6

1
,3

6
1

1
,1

3
6

9
1
1

6
4
2

4
6
3

3
4
3

k
k
t
p
o
w
e
r

5
,0

0
0

7
,2

8
1

7
,9

5
1

7
,5

7
3

6
,7

3
8

6
,4

5
9

5
,4

5
1

4
,4

7
2

3
,3

2
7

2
,0

1
7

n
l
p
k
k
t
1
2
0

3
6
,9

8
9

3
5
,4

3
2

2
8
,5

5
2

2
8
,8

0
7

2
2
,8

4
6

1
6
,7

1
9

1
1
,3

4
0

7
,3

5
7

4
,8

2
4

3
,3

8
1

c
a
g
e
1
5

2
9
9
,4

5
2

3
4
8
,6

4
1

3
1
6
,5

0
0

2
2
6
,5

1
1

1
7
8
,7

9
5

1
2
3
,0

4
6

8
4
,1

4
1

5
7
,7

8
6

3
8
,6

1
8

2
4
,7

2
7

n
l
p
k
k
t
1
6
0

6
4
,8

4
2

6
9
,4

0
1

5
1
,6

1
6

5
4
,3

8
4

4
1
,6

6
1

3
0
,5

0
6

1
9
,5

5
2

1
3
,0

8
6

8
,5

4
3

5
,6

0
3

n
l
p
k
k
t
2
0
0

1
0
4
,1

2
9

1
0
5
,7

8
7

8
3
,6

4
7

8
5
,2

7
2

6
4
,5

7
2

4
3
,7

9
9

3
0
,9

2
5

2
0
,1

5
0

1
3
,5

8
6

8
,9

5
0

a
f
s
h
e
l
l
9

9
,8

2
0

2
3
,7

4
0

4
9
,1

3
5

9
3
,6

6
5

1
4
5
,2

1
5

2
2
6
,5

7
5

3
3
9
,6

4
5

4
9
3
,0

6
7

7
1
1
,2

0
3

1
,0

0
5
,1

1
6

a
u
d
i
k
w
1

1
0
5
,9

4
9

3
3
9
,8

7
4

8
0
5
,9

7
9

1
,3

7
9
,1

3
2

2
,0

8
7
,4

5
5

2
,9

9
4
,2

2
8

4
,2

4
0
,8

8
2

5
,8

4
5
,7

9
0

7
,7

6
0
,4

7
5

1
0
,0

4
7
,2

1
3

l
d
o
o
r

2
5
,1

4
6

5
0
,5

1
6

9
3
,9

3
3

1
7
1
,0

8
6

2
8
0
,6

9
5

4
3
4
,6

6
9

6
6
6
,3

0
8

9
9
1
,9

3
9

1
,4

7
3
,5

0
5

2
,1

3
9
,3

7
4

e
c
o
l
o
g
y
2

1
,2

8
0

2
,4

8
1

4
,8

3
1

7
,7

7
9

1
2
,4

4
1

1
8
,0

5
0

2
5
,4

8
7

3
6
,3

9
6

5
1
,2

9
5

7
1
,2

9
0

e
c
o
l
o
g
y
1

1
,2

5
8

2
,5

1
6

4
,8

1
3

7
,6

3
9

1
1
,9

0
0

1
7
,8

5
6

2
5
,6

3
8

3
6
,1

1
1

5
1
,0

5
0

7
1
,9

7
4

t
h
e
r
m
a
l
2

1
,0

4
9

3
,2

8
4

7
,4

8
2

1
2
,8

3
7

2
1
,1

0
6

3
1
,7

3
1

4
6
,7

5
3

6
8
,5

7
8

9
8
,3

6
3

1
3
9
,8

3
6

a
f
s
h
e
l
l
1
0

2
8
,6

9
5

6
0
,9

5
5

1
1
5
,5

2
5

1
8
1
,5

3
5

2
8
4
,2

3
5

4
2
1
,7

8
6

6
2
9
,8

5
4

9
0
5
,8

8
9

1
,2

8
2
,8

1
5

1
,8

1
7
,5

3
4

G
3
c
i
r
c
u
i
t

1
,4

5
5

3
,4

6
5

6
,1

4
6

1
0
,1

8
0

1
4
,9

4
7

2
3
,8

3
9

3
8
,8

5
0

5
7
,7

2
9

8
2
,7

7
6

1
1
8
,5

6
1

k
k
t
p
o
w
e
r

2
1
,0

9
9

4
0
,7

5
0

7
9
,3

2
1

1
3
4
,3

4
2

2
1
5
,3

2
1

3
4
1
,7

7
2

5
0
3
,3

3
4

6
5
5
,1

2
9

7
7
9
,9

0
4

8
7
3
,4

2
0

n
l
p
k
k
t
1
2
0

3
0
3
,0

5
6

6
1
7
,1

4
2

9
9
3
,1

4
2

1
,4

0
1
,1

2
0

1
,9

6
7
,1

6
4

2
,6

5
4
,4

0
6

3
,4

4
6
,8

5
6

4
,4

7
9
,3

8
5

5
,6

9
0
,6

9
7

7
,2

1
1
,4

5
7

c
a
g
e
1
5

8
7
9
,6

6
8

1
,5

0
1
,5

5
8

2
,2

3
5
,2

4
0

3
,0

7
2
,4

9
3

3
,8

9
0
,3

5
9

4
,7

5
1
,1

6
6

5
,7

2
4
,7

8
7

6
,8

4
0
,3

5
5

8
,0

4
2
,5

6
3

9
,4

0
9
,9

8
2

T
a
b
le

6
.

A
v
er

a
g
e

co
m

m
u
n
ic

a
ti

o
n

v
o
lu

m
e,

eq
.

(2
)

(t
o
p
)

a
n
d

ed
g
e

cu
t,

eq
.

(3
)

(b
o
tt

o
m

),
ov

er
5

M
o
n
d
ri

a
a
n

ru
n
s,

fo
r

g
ra

p
h
s

fr
o
m

th
e

m
a
t
r
i
x
/

ca
te

g
o
ry

,
T
a
b
le

3
,
d
iv

id
ed

in
to

k
=

2
,4

,.
..

,1
0
2
4

p
a
rt

s
w

it
h

im
b
a
la

n
ce

ε
=

0
.0

3
.
F
o
r
n
l
p
k
k
t
1
6
0

a
n
d
n
l
p
k
k
t
2
0
0
,
th

e
te

st
sy

st
em

ra
n

o
u
t

o
f
m

em
o
ry

w
h
il
e

it
w

a
s

p
a
rt

it
io

n
in

g
th

e
ed

g
e

cu
t

m
a
tr

ix
.

11

The strange dip in the communication volume for finan512 in Table 4 for
k = 32 parts can be explained by the fact that the graph finan512 consists of 32
densely connected parts with few connections between them, see the visualisation
of this graph in [11], such that there is a natural partitioning with very low
communication volume in this case.

In Fig. 2, we plot the time required by Mondriaan to create a partitioning
for both communication volume and edge cut. The number of nonzeros in the
matrices from Thm. 1 and Thm. 2 equals 2 |E| + |V | and 2 |E|, respectively.
However, the matrix sizes are equal to |V | × |V | and |E| × |V |, respectively.
Therefore, even though the number of nonzeros in matrices from Thm. 2 is
smaller, the larger number of nets (typically |E| > |V |, e.g. nlpkkt200) will lead
to higher processing times and increased memory requirements for the edge-cut
matrices, as can be seen when comparing Fig. 2(b) to Fig. 2(a).

We have also investigated the communication volume imbalance, defined for
a partitioning Π of G into k parts as

CV(Π)
LV(Π)/k

− 1. (9)

Eq. (9) measures the imbalance in communication volume and can be compared
to the factor ε for vertex imbalance in eq. (1). We plot eq. (9) as a percentage
for a selection of graphs in Fig. 3, where we see that the deviation of the com-
munication volume CV(Π) from perfect balance, i.e. from LV(Π)/k, is no more
than 140% (for cage15, k = 1024). Compared to the theoretical upper bound
for the imbalance of k−1 (via eq. (7)), this is very good. This also means that at
most a factor of 2.4 in communication volume per processor can still be gained
by improving the communication balance. Therefore, as the number of parts in-
creases, the different parts of the partitionings generated by Mondriaan are not
only balanced in terms of vertices, cf. eq. (1), but also in terms of communication
volume.

4 Conclusion

We have shown that it is possible to use the Mondriaan matrix partitioner as
a graph partitioner by constructing appropriate matrices of a given graph for
either the communication volume or edge-cut metric. Mondriaan’s performance
was measured by partitioning graphs from the 10th DIMACS challenge on graph
partitioning and clustering, as well as comparing obtained edge cuts with the
best known results from [19]: here Mondriaan’s average edge cut was, on average,
21% higher than the best known. From these results we find that Mondriaan can
effectively be used to perform graph partitioning.

To our surprise, the partitionings generated by Mondriaan are reasonably
balanced in terms of communication volume, as shown in Fig. 3, even though
Mondriaan does not perform explicit communication volume balancing during
matrix partitioning. We attribute the observed balancing to the fact that the

12

10-2

10-1

100

101

102

103

104

105

103 104 105 106 107 108 109

P
ar

tit
io

ni
ng

 ti
m

e
(s

)

Number of graph edges

Partitioning time (communication volume)

walshaw (2)
walshaw (32)

walshaw (1024)
matrix (2)

matrix (32)
matrix (1024)

(a)

10-2

10-1

100

101

102

103

104

103 104 105 106 107 108 109

P
ar

tit
io

ni
ng

 ti
m

e
(s

)

Number of graph edges

Partitioning time (edge cut)

walshaw (2)
walshaw (32)

walshaw (1024)
matrix (2)

matrix (32)
matrix (1024)

(b)

Fig. 2. The average partitioning time required by the Mondriaan partitioner to gener-
ate the partitionings from Table 4, 6, (a), and Table 5, 6, (b).

13

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 8 16 32 64 128 256 512 1024

Im
ba

la
nc

e
(%

)

Number of parts k

Communication volume imbalance

finan512
144

ecology1
af_shell10
G3_circuit

cage15
nlpkkt200

Fig. 3. The communication volume imbalance given by eq. (9), plotted as a percentage
for several graphs.

Mondriaan algorithm performs random tie-breaking, without any preference for
a specific part of the partitioning.

These tests also indicate the value of extending Mondriaan to take hyper-
graph net weights into account for the (λ− 1)-metric, eq. (5), because we could
only perform unweighted graph partitioning due to the absence of this feature.
We intend to add this feature in a next version of Mondriaan.

References

1. Bader, D.A., Sanders, P., Wagner, D., Meyerhenke, H., Hendrickson, B., Johnson,
D.S., Walshaw, C., Mattson, T.G.: 10th DIMACS implementation challenge - graph
partitioning and graph clustering (2012), http://www.cc.gatech.edu/dimacs10/
index.shtml

2. Bisseling, R.H., Fagginger Auer, B.O., Yzelman, A.N., van Leeuwen, T.,
Çatalyürek, Ü.V.: Two-dimensional approaches to sparse matrix partitioning. In:
Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing. CRC Press
(2012)

3. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach using BSP
and MPI. Oxford University Press, Oxford, UK (2004)

4. Bisseling, R.H., Meesen, W.: Communication balancing in parallel sparse matrix-
vector multiplication. Electronic Transactions on Numerical Analysis 21, 47–65
(2005), special Issue on Combinatorial Scientific Computing

5. Bui, T., Jones, C.: A heuristic for reducing fill-in in sparse matrix factorization.
In: Proceedings Sixth SIAM Conference on Parallel Processing for Scientific Com-
puting. pp. 445–452. SIAM, Philadelphia, PA (1993)

6. Caldwell, A.E., Kahng, A.B., Markov, I.L.: Improved algorithms for hypergraph
bipartitioning. In: Proceedings Asia and South Pacific Design Automation Confer-
ence. pp. 661–666. ACM Press, New York (2000)

7. Çatalyürek, Ü.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and
Distributed Systems 10(7), 673–693 (1999)

14

8. Çatalyürek, Ü.V., Aykanat, C.: PaToH: A Multilevel Hypergraph Partition-
ing Tool, Version 3.0. Bilkent University, Department of Computer Engineer-
ing, Ankara, 06533 Turkey. PaToH is available at http://bmi.osu.edu/∼umit/

software.htm (1999)
9. Çatalyürek, Ü.V., Aykanat, C.: A fine-grain hypergraph model for 2D decomposi-

tion of sparse matrices. In: Proceedings Eighth International Workshop on Solving
Irregularly Structured Problems in Parallel (Irregular 2001). p. 118. IEEE Press,
Los Alamitos, CA (2001)

10. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering.
Parallel Computing 34(6-8), 318–331 (2008)

11. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans-
actions on Mathematical Software 38(1), 1–25 (2011)

12. Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Catalyurek, U.V.: Par-
allel hypergraph partitioning for scientific computing. In: Proceedings IEEE Inter-
national Parallel and Distributed Processing Symposium 2006. IEEE Press (2006)

13. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm
for mapping parallel computations. SIAM Journal on Scientific Computing 16(2),
452–469 (1995)

14. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)

15. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: Proceedings
36th ACM/IEEE Conference on Design Automation. pp. 343–348. ACM Press,
New York (1999)

16. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular
graphs. SIAM Review 41(2), 278–300 (1999)

17. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal 29, 291–307 (1970)

18. Pellegrini, F., Roman, J.: Scotch: A software package for static mapping by dual
recursive bipartitioning of process and architecture graphs. In: Proceedings High
Performance Computing and Networking Europe. Lecture Notes in Computer Sci-
ence, vol. 1067, pp. 493–498. Springer (1996)

19. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multi-
level optimisation approach to graph-partitioning. J. of Global Optimization 29,
225–241 (2004)

20. Trifunović, A., Knottenbelt, W.J.: Parallel multilevel algorithms for hypergraph
partitioning. Journal of Parallel and Distributed Computing 68(5), 563–581 (2008)

21. Vastenhouw, B., Bisseling, R.H.: A two-dimensional data distribution method for
parallel sparse matrix–vector multiplication. SIAM Review 47(1), 67–95 (2005)

22. Walshaw, C., Cross, M.: JOSTLE: Parallel Multilevel Graph-Partitioning Software
– An Overview. In: Magoules, F. (ed.) Mesh Partitioning Techniques and Domain
Decomposition Techniques, pp. 27–58. Civil-Comp Ltd. (2007)

23. Yzelman, A.N., Bisseling, R.H.: Cache-oblivious sparse matrix–vector multiplica-
tion by using sparse matrix partitioning methods. SIAM Journal on Scientific Com-
puting 31(4), 3128–3154 (2009)

15

