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Abstract. We investigate using the Mondriaan matrix partitioner for
unweighted graph partitioning in the communication volume and edge-
cut metrics. By converting the unweighted graphs to appropriate matri-
ces, we measure Mondriaan’s performance as a graph partitioner for the
10th DIMACS challenge on graph partitioning and clustering. We find
that Mondriaan can effectively be used as a graph partitioner: w.r.t. the
edge-cut metric, Mondriaan’s average results are within 21% of the best
known results as listed in Chris Walshaw’s partitioning archive.

1 Introduction

In this paper, we use the Mondriaan matrix partitioner [21] to partition the
graphs from the 10th DIMACS challenge on graph partitioning and clustering
[1]. In this way, we can compare Mondriaan’s performance as a graph partitioner
with the performance of the state-of-the-art partitioners participating in the
challenge.

An undirected graph G is a pair (V, F), with vertices V, and edges E that
are of the form {u,v} for u,v € V with possibly v = v. For vertices v € V| we
denote the set of all of v’s neighbours by

Vo ={ueV|{uv}€E}

Note that vertex v is a neighbour of itself precisely when the self-edge {v,v} € E.

Hypergraphs are a generalisation of undirected graphs, where edges can con-
tain an arbitrary number of vertices. A hypergraph G is a pair (V,N), with
vertices V, and nets (or hyperedges) A; nets are subsets of V that can contain
any number of vertices.

Let € > 0, k € N, and G = (V, E) be an undirected graph. Then a valid
solution to the graph partitioning problem for partitioning G into k parts with
imbalance €, is a partitioning IT : V' — {1,...,k} of the graph’s vertices into k
parts, each part IT-!({i}) containing at most
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vertices.
To measure the quality of a valid partitioning we use two different metrics.
The communication volume metric' [1] is defined by

CVUD) = max 37 [H(V)\ {H1(0)}. (2)
s

For each vertex v, we determine the number of different parts 7(v) in which v
has neighbours, except IT(v). Then, the communication volume is given by the
maximum over ¢, of the sum of all w(v) for vertices v belonging to part i.

The edge-cut metric [1], defined as

EC(I) := [{{u,v} € E | IT(u) # II(v)}], 3)

measures the number of edges that exist between different parts of the partition-
ing II.

Name Ref. | Graph/ Sequential/
hypergraph | parallel

Chaco [13] | graph sequential
Metis [14] | graph sequential
Scotch [18] | graph sequential
Jostle [22] | graph parallel
ParMetis  [16] | graph parallel
PT-Scotch [10] | graph parallel
hMETIS  [15] | hypergraph | sequential

ML-Part [6] | hypergraph | sequential
Mondriaan [21] | hypergraph | sequential

PaToH [8] | hypergraph | sequential
Parkway  [20] | hypergraph | parallel
Zoltan [12] | hypergraph | parallel

Table 1. Overview of available software for partitioning (hyper)graphs from [2].

There exist a lot of different (hyper)graph partitioners, which are summarised
in Table 1 from [2]. All partitioners follow a multi-level strategy [5], where the
(hyper)graph is coarsened by generating a matching of the (hyper)graph’s ver-
tices and contracting matched vertices to a single vertex. Doing this recursively
creates a hierarchy of increasingly coarser approximations of the original (hy-
per)graph. After this has been done, an initial partitioning is generated on the
coarsest (hyper)graph in the hierarchy, i.e. the one possessing the smallest num-
ber of vertices. This partitioning is subsequently propagated to the finer (hy-
per)graphs in the hierarchy and refined at each level (e.g. using the Kernighan—
Lin algorithm [17]), until we reach the original (hyper)graph and obtain the final
partitioning.

! We forgo custom edge and vertex weights and assume they are all equal to one,
because Mondriaan’s hypergraph partitioner does not support net weights.



2 Mondriaan

Mondriaan has been designed to partition the matrix and the vectors for a par-
allel sparse matrix—vector multiplication, where a sparse matrix A is multiplied
by a dense input vector v to give a dense output vector u = Av as the re-
sult. First, the matrix partitioning algorithm is executed to minimise the total
communication volume LV (IT) of the partitioning, defined below, and then the
vector partitioning algorithm is executed with the aim of balancing the commu-
nication among the processors. The matrix partitioning itself does not aim to
achieve such balance, but it is not biased in favour of any processor part either.

Name Ref. 14 N
Column-net [7]| {r1i,...,rm} | {{ri|1<i<m,a;; #0}|1<j<n}
Row-net (7] {c1,--yen}t | {{eg 11 <j<n,a;; #0} |1 <i<m}

Fine-grain  [9] [{vi; | ai; # 0} {{vi;[1 <i<m,ai; #0} |1 <j<n}

column nets

U{{vij|l <j<mnai; #0} [ 1 <i<m}

row nets

Table 2. Available representations of an m X n matrix A = (a;;) by a hypergraph
G = (V,N) in Mondriaan.

Mondriaan uses recursive bipartitioning to split the matrix or its submatrices
repeatedly into two parts, choosing the best of the row or column direction in the
matrix. The current submatrix is translated into a hypergraph by the column-
net or row-net model, respectively (see Table 2). Another possibility is to split
the submatrix based on the fine-grain model, and if desired the best split of
the three methods can be chosen. The outcome of running Mondriaan is a two-
dimensional partitioning of the sparse matrix (i.e., a partitioning where both the
matrix rows and columns are split). The number of parts is not restricted to a
power of two, as Mondriaan can split parts according to a given ratio such as
2:1. After each split, Mondriaan adjusts the weight balancing goals of the new
parts obtained, as the new part that receives the largest fraction of the weight
will need to be stricter in allowing an imbalance during further splits than the
part with the smaller fraction.

If the input vector and output vector can be partitioned independently, the
vector partitioning algorithm usually has enough freedom to achieve a reason-
able communication balancing. If the matrix is square, and both vectors must
be partitioned in the same way, then there is usually little freedom. Sometimes,
the total communication volume must even be increased because of the identical
vector partitioning. If the matrix diagonal has only nonzero elements, however,
the vector partitioning can be achieved without incurring additional communi-
cation by assigning vector components v; and u; to the same processor as the
diagonal matrix element a;;. More details on the matrix and vector partitioning



can be found in [21]; improved methods for vector partitioning are given in [4],
see also [3].
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(c) k=4 (d) k = 1024

Fig. 1. Mondriaan 1D column partitioning of the graph fe_tooth, modelled as a sparse
matrix c¢f. Thm. 1, into k = 1,2,4,1024 parts with imbalance ¢ = 0.03. The rows and
columns of the matrices have been permuted for k£ > 1 to Separated Block Diagonal
form, see [23].

Here, we will use Mondriaan as a hypergraph partitioner, which can be done
by choosing the column direction in all splits, so that columns are vertices and
rows are nets. This means that we use Mondriaan in one-dimensional mode, as
only rows will be split. Fig. 1 illustrates this splitting procedure. Mondriaan has



the option to use its own, native hypergraph bipartitioner, or link to the external
partitioner PaToH [8]. In the present work, we use the native partitioner.

For the graph partitioning challenge posed by DIMACS, we try to fit the
existing software to the aims of the challenge. One could say that this entails
abusing the software, as it was designed for a different purpose, namely ma-
trix and hypergraph partitioning. Using a hypergraph partitioner to partition
graphs will be at the cost of some additional, unnecessary overhead. Still, it will
be interesting to see how the Mondriaan software performs in this unforeseen
mode, and to compare the quality of the generated partitionings to the quality
of partitionings generated by other software, in particular by graph partitioning
packages.

In the situation of the challenge, we can only use the matrix partitioning
of Mondriaan and not the vector partitioning, as the vertex partitioning of the
graph is already completely determined by the column partitioning of the ma-
trix. The balance of the communication will then solely depend on the balance
achieved by the matrix partitioning.

Internally, Mondriaan’s hypergraph partitioner solves the following problem.
For a hypergraph G = (V,N) with vertex weights ¢ : V — N, an imbalance
factor € > 0, and a number of parts k¥ € N, Mondriaan’s partitioner produces a
partitioning IT : V — {1,...,k} such that

curim s a+e 2] asisn, (@)

where the partitioner tries to minimise the (A — 1)-volume

V() = Y ()] —1). (®)

neN

We will now translate the DIMACS partitioning problems from Sec. 1 to
the hypergraph partitioning problem that Mondriaan is designed to solve, by
creating a suitable hypergraph G, encoded as a sparse matrix A in the row-net
model.

2.1 Minimising communication volume

Let G = (V, E) be a given graph, k € N, and ¢ > 0. Our aim will be to construct
a matrix A from G such that minimising eq. (5) subject to eq. (4) enforces
minimisation of eq. (2) subject to eq. (1).

To satisfy eq. (1), we need to create one column in A for each vertex in V, such
that the hypergraph represented by A in the row-net model will have V = V.
This is also necessary to have a direct correspondence between partitionings of
the vertices V' of the graph and the vertices V of the hypergraph. Setting the
weights ¢ of all vertices/matrix columns to 1 will then ensure that eq. (1) is
satisfied if and only if eq. (4) is satisfied.



It is a little more tricky to match eq. (2) to eq. (5). Note that because of
the maximum in eq. (2), we are not able to create an equivalent formulation.
However, as

CVUI) <Y > V)N ()} =Y V)N ()}, (6)

i=1 wev veV

we can provide an upper bound, which we can use to limit CV(IT). We need
to choose the rows of A, corresponding to nets in the row-net hypergraph G =
(V,N), such that eq. (6) and eq. (5) are in agreement.

For a net n € NV, we have that n CV = V is simply a collection of vertices of
G, so |II(n)| in eq. (5) equals the number of different parts in which the vertices
of n are contained. In eq. (6) we count, for a vertex v € V| all parts in which v
has a neighbour, except IT(v). Note that this number equals |IT(V,,) \ {II(v)}| =
[V, U{v})| — 1.

Hence, we should pick N := {V,U{v} | v € V'} as the set of nets, for eq. (6)
and eq. (5) to agree. In the row-net matrix model, this corresponds to letting
A be a matrix with a row for every vertex v € V, filled with nonzeros a,,, and
Gy for all w € V, \ {v}. Then, for this hypergraph G, we have by eq. (6) that
CV(II) < LV(I). Note that since the communication volume is defined as a
maximum, we also have that k CV(IT) > LV(II).

Theorem 1. Let G = (V, E) be a given graph, k € N, and € > 0. Let A be the
|V | X |V| matriz with entries

w1 if {v,w} € E orv=uw,
YW1 0 otherwise,

forv,w €V, and G = (V,N) the hypergraph corresponding to A in the row-net
model with vertex weights ((v) =1 for all v € V.

Then, for every partitioning IT : V' — {1,...,k}, we have that II satisfies eq.
(1) if and only if II satisfies eq. (4), and

%LV(H) < CV(IT) < LV(ID). (7)

2.2 Minimising edge cut

We will now follow the same procedure as in Sec. 2.1 to construct a matrix A
such that minimising eq. (5) subject to eq. (4) is equivalent to minimising eq.
(3) subject to eq. (1).

As in Sec. 2.1, the columns of A should correspond to the vertices V of G to
ensure that eq. (4) is equivalent to eq. (1).

Eq. (3) simply counts all of G’s edges that contain vertices belonging to two
parts of the partitioning II. Since every edge contains vertices belonging to at
least one part, and at most two parts, this yields

BC(IT) = 3 (11(e)] - 1).

eckE



Choosing A := E will therefore give us a direct correspondence between eq. (5)
and eq. (3).

Theorem 2. Let G = (V, E) be a given graph, k € N, and € > 0. Let A be the
|E| x |V| matriz with entries

aev::{l if v E€e,

0 otherwise,

fore € E, v eV, and G = (V,N) the hypergraph corresponding to A in the
row-net model with vertex weights ((v) =1 for allv € V.

Then, for every partitioning IT : V — {1,...,k}, we have that II satisfies eq.
(1) if and only if IT satisfies eq. (4), and

EC(IT) = LV(II). (8)

With Thm. 1 and Thm. 2, we know how to translate a given graph G to a
hypergraph that Mondriaan can partition to obtain solutions to the DIMACS
partitioning challenges.

3 Results

We measure Mondriaan’s performance as a graph partitioner by partitioning
graphs from the walshaw/ [19] and matrix/ [11] categories of the DIMACS
test bed [1], see Table 3. This is done by converting the graphs to matrices,
as expressed by Thm. 1 and Thm. 2, and partitioning these matrices with an
updated version of Mondriaan 3.11, using the onedimcol splitting strategy (since
the matrices represent row-net hypergraphs) with the lambdal metric (cf. eq.
(5)). The imbalance is set to e = 0.03, the number of parts to k = 2,4,...,1024,
and we average the recorded communication volumes and edge cuts over 10
(walshaw/) or 5 (matrix/) runs (as Mondriaan uses random tie-breaking) of
the Mondriaan partitioner. Note that we did not take the best result of the set
of runs, as we are interested in the average performance of Mondriaan. All results
were recorded on a dual quad-core AMD Opteron 2378 system with 32GiB of
main memory and can be found in Tables 4-6 and Figures 2 and 3.

Results for graphs from the walshaw/ category for the edge-cut metric, Table
5, can directly be compared with the best known partitionings with 3% imbalance
from http://staffweb.cms.gre.ac.uk/~wc06/partition/ [19]. Compared to
the results retrieved on November 2, 2011, we find that Mondriaan performs
rather well, except for the graph add32. If we take the average of the relative edge
cuts over all graphs in walshaw/ and all values k = 2,4, ...,64, then Mondriaan
performs 21% worse than the best results from [19], and only 16% worse if add32
is excluded. It should be noted that we compare the average edge cut obtained
by Mondriaan to the best known edge cuts from [19].



G 14 |E]| G 14 £
add20 2,395 7,462 af_shell9 504,855 8,542,010
data 2,851 15,093 audikwl 943,695| 38,354,076
3elt 4,720 13,722 ldoor 952,203| 22,785,136
uk 4,824 6,837 ecology2 999,999| 1,997,996
add32 4,960 9,462 ecologyl 1,000,000 1,998,000
bcsstk33 8,738| 291,583 thermal2 1,227,087 3,676,134
whitaker3 | 9,800| 28,989 af_shell10| 1,508,065 25,582,130
crack 10,240 30,380 G3_circuit| 1,585,478| 3,037,674
wing nodal| 10,937 75,488 kkt_power | 2,063,494| 6,482,320
fe 4elt2 11,143] 32,818 nlpkkt120 | 3,542,400 46,651,696
vibrobox 12,328| 165,250 cagelb 5,154,859 47,022,346
bcsstk29 13,992 302,748 nlpkkt160 | 8,345,600(/110,586,256
4elt 15,606| 45,878 nlpkkt200 |16,240,000(|215,992,816
fe_sphere | 16,386 49,152
cti 16,840 48,232
memplus 17,758 54,196
cs4 22499| 43,858
bcsstk30 28,924|1,007,284
bcsstk31 35,588| 572,914
fe_pwt 36,519 144,794
besstk32 | 44,609 985,046
fe_body 45,087| 163,734
t60k 60,005| 89,440
wing 62,032 121,544
brack2 62,631| 366,559
finan512 74,752 261,120
fe_tooth 78,136| 452,591
fe_rotor 99,617| 662,431
598a 110,971 741,934
fe_ocean (143,437 409,593
144 144,649|1,074,393
wave 156,317|1,059,331
m14b 214,765(1,679,018
auto 448,695(3,314,611

Table 3. Graphs G = (V, F) from the 10th DIMACS challenge [1] from the walshaw/
(left) and matrix/ (right) categories.




G 2 4 8| 16| 32| 64| 128| 256(512|1024
add20 80| 116| 142| 163| 208 - - -l - -
data 66| 92| 95| 87| T4 - - -l - -
3elt 47| 68| 69| 74| 60| 87 - -l - -
uk 21| 32| 42| 40| 34| 26 - -l - -
add32 16| 32| 35| 29| 27| 27 - -l - -
bcsstk33 494| 734| 796| 817| 635 495| 384| 375 - -
whitaker3 65| 132 112] 107| 82| 68 - -l - -
crack 101| 115 131 115 84| 71| 53| 101|121] 69
wing nodal| 460| 688| 564| 494| 395 273| 194| 150 - -
fe_4elt2 66| 97| 113] 103| 84| 91| 52 -l - -
vibrobox |(1,075|1,155(1,047| 962| 713| 560 -| 568 - -
bcsstk29 187| 384| 398| 365 273| 245 287 -l - -
4elt 74| 115| 106 106| 108| 81| 64 -l - -
fe_sphere | 204| 223| 192 152| 119/ 92| 69| 128 - -
cti 272| 560| 574| 431| 319| 221| 147| 151 - -
memplus  [2,608|1,850(1,113| 792 732| 662 561| 692| - -
cs4 330| 520| 442| 326| 244| 171| 112| 79/102 -
bcsstk30 317| 675 665 787| T38| 639 558| 489|425 -
bcsstk31 406| 564| 582| 562| 515 439 338| 293|267 -
fe_pwt 120 145| 173| 174| 182| 147 113| 157|102 -
bcsstk32 602| 785| 885 794| 629 505| 389| 349|298 -
fe_body 124| 212| 234| 212| 173| 145| 128] 99| 90| 134
t60k 74| 158| 173| 154| 137| 113] 82| 62| 46| 62
wing 726 987| 801| 644| 480| 337| 227| 148|218 -
brack?2 238 661| 836 739| 619 499| 398 309|259 -
finan512 94| 123| 155| 156| 88| 175| 175/ 206|188 149
fe_tooth |1,299(1,393|1,429(1,224| 946| 807| 582| 398|275 -
fe_rotor 574/1,467|1,454(1,297|1,028| 813| 640 445|379 -
598a 657|1,557|1,570(1,563|1,230| 940| 740| 541|368 283
fe_ocean 274| 918|1,172|1,184| 971| 714| 514| 354|242| 164
144 1,719(2,785|2,340(1,743|1,608|1,325(1,007| 675|448| 303
wave 2,505(3,266|2,954(2,411|1,790|1,333| 906| 605|412| 284
m14b 955(2,338/2,404|2,234|1,670(1,317|1,087| 827|583| 390
auto 2,5801(5,059|5,177|4,406|3,287|2,581|1,775|1,182|800| 545

Table 4. Average communication volume, eq. (2), over 10 Mondriaan runs, for graphs
from the walshaw/ category, Table 3, divided into k = 2,4, ...,1024 parts with imbal-
ance € = 0.03. A ‘-’ indicates that Mondriaan was unable to generate a partitioning

satisfying the balancing requirement, eq. (1).




G 2 1 s[ 16 32 64] 128 256] 512 1024
add20 701| 1,239] 1,860] 2,328] 2,742 - - - - -
data 210/ 428| 770 1,303| 2,080 - - - - -
3elt 92| 221| 391 662| 1,108 2,008 - - - -
uk 22| 53| 113 190| 318] 544 - - - -
add32 48| 109| 201| 298|  493| 800 - - - -
besstk33  [10,082(22,289(39,695(59,426| 84,167|115,601|150,047(197,525 - -
whitaker3 | 130 395 731| 1,213| 1,879 2,815 - - - -
crack 197| 407|767 1,223 1,915| 2,846 4,211| 8,861| 27,546| 28,206
wing nodal| 1,750| 3,864| 6,078| 9,206| 13,142| 17,653| 23,074| 30,739 - -
fe_delt2 130| 356 658 1,140| 1,842| 2,866| 4,144 - - -
vibrobox |11,456(21,559|31,780|39,980| 48,792| 56,222| 70,224/100,660 - -
besstk29 | 3,009| 8,719(17,760(27,286| 41,233| 61,076 98,161 - - -
delt 144| 361 630| 1,100| 1,819| 2,964| 4,724 - - -
fe_sphere | 426 844| 1,308 2,006| 2,902| 4,173| 5,918 11,041 - -
cti 346| 1,011| 1,882| 3,075| 4,400/ 6,136| 8,479 12,184 - -
memplus | 5,788| 9,829(12,433(14,345| 16,081| 18,052 21,185 23,664 - -
csd 402| 1,082| 1,717| 2,484 3,448| 4,688 6,234 8,267 15,904 -
besstk30 | 6,483(17,522(38,673(80,951|128,679|189,268|272,306(381,846|527,735 -
besstk31 | 2,880| 7,93515,805(27,376| 44,942| 67,652| 98,515|140,666]199,171 -
fe_put 367| 796| 1,577| 3,179| 6,112 9,305 12,993| 18,544| 26,003 -
besstk32 | 5,657|11,674]25,134]43,940| 69,459(105,490|154,161|225,289|317,952 -
fe_body 294| 735| 1,331| 2,184| 3,631| 5,835 9,403| 14,507| 22,128| 48,374
£60k 82| 259| 548 994| 1,632| 2,547 3,813| 5,565 8,152| 12,087
wing 912| 1,921| 2,966| 4,551 6,628 9,044| 12,010 15,890| 24,206 -
brack2 713| 2,972| 7,594/12,697| 19,722| 29,070| 42,271| 60,056| 84,770 -
finan512 162| 510| 1,125 1,872 2,896| 11,089| 22,030| 39,294| 57,481 75,316
fe_tooth | 4,140| 7,892|13,284(20,226| 28,577| 39,601| 53,141| 71,917| 96,280 -
fe_rotor | 2,119| 8,012|14,289(23,311| 35,628| 52,139| 73,975|102,663|140,333 -
598a 2,457| 8,343(17,031|28,841| 44,104| 63,306 88,039|118,654|157,227|209,672
fe_ocean 329| 1,918| 4,720| 8,832| 14,401| 22,074| 30,787| 42,182| 57,226/ 75,811
144 6,812(17,251|28,688|43,192| 63,041| 87,927|119,688|161,019(214,115|280,451
wave 9,206(20,999(34,177|49,883| 69,756| 95,549|128,205|169,570(220,677|282,531
n14b 3,973|13,688|27,861|48,599| 75,484|109,861|154,290|212,062(286,225|381,217
auto 10,364|28,026(52,424|89,759|134,990|193,265|267,282|360,509|476,470|621,578

Table 5. Average edge cut, eq.

(3), over 10 Mondriaan runs, for graphs from the
walshaw/ category, Table 3, divided into k = 2,4,...,1024 parts with imbalance ¢ =
0.03. A ‘-’ indicates that Mondriaan was unable to generate a partitioning satisfying
the balancing requirement, eq. (1).
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The strange dip in the communication volume for finan512 in Table 4 for
k = 32 parts can be explained by the fact that the graph finan512 consists of 32
densely connected parts with few connections between them, see the visualisation
of this graph in [11], such that there is a natural partitioning with very low
communication volume in this case.

In Fig. 2, we plot the time required by Mondriaan to create a partitioning
for both communication volume and edge cut. The number of nonzeros in the
matrices from Thm. 1 and Thm. 2 equals 2|E| 4+ |V| and 2|E|, respectively.
However, the matrix sizes are equal to |V| x |[V| and |E| x |V, respectively.
Therefore, even though the number of nonzeros in matrices from Thm. 2 is
smaller, the larger number of nets (typically |E| > |V, e.g. n1pkkt200) will lead
to higher processing times and increased memory requirements for the edge-cut
matrices, as can be seen when comparing Fig. 2(b) to Fig. 2(a).

We have also investigated the communication volume imbalance, defined for
a partitioning I of G into k parts as

ovan )
LV(II)/k

Eq. (9) measures the imbalance in communication volume and can be compared
to the factor e for vertex imbalance in eq. (1). We plot eq. (9) as a percentage
for a selection of graphs in Fig. 3, where we see that the deviation of the com-
munication volume CV(IT) from perfect balance, i.e. from LV(IT)/k, is no more
than 140% (for cage15, k = 1024). Compared to the theoretical upper bound
for the imbalance of k—1 (via eq. (7)), this is very good. This also means that at
most a factor of 2.4 in communication volume per processor can still be gained
by improving the communication balance. Therefore, as the number of parts in-
creases, the different parts of the partitionings generated by Mondriaan are not
only balanced in terms of vertices, cf. eq. (1), but also in terms of communication
volume.

4 Conclusion

We have shown that it is possible to use the Mondriaan matrix partitioner as
a graph partitioner by constructing appropriate matrices of a given graph for
either the communication volume or edge-cut metric. Mondriaan’s performance
was measured by partitioning graphs from the 10th DIMACS challenge on graph
partitioning and clustering, as well as comparing obtained edge cuts with the
best known results from [19]: here Mondriaan’s average edge cut was, on average,
21% higher than the best known. From these results we find that Mondriaan can
effectively be used to perform graph partitioning.

To our surprise, the partitionings generated by Mondriaan are reasonably
balanced in terms of communication volume, as shown in Fig. 3, even though
Mondriaan does not perform explicit communication volume balancing during
matrix partitioning. We attribute the observed balancing to the fact that the
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Partitioning time (communication volume)
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Fig. 2. The average partitioning time required by the Mondriaan partitioner to gener-
ate the partitionings from Table 4, 6, (a), and Table 5, 6, (b).
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Communication volume imbalance
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Fig. 3. The communication volume imbalance given by eq. (9), plotted as a percentage
for several graphs.

Mondriaan algorithm performs random tie-breaking, without any preference for
a specific part of the partitioning.

These tests also indicate the value of extending Mondriaan to take hyper-
graph net weights into account for the (A — 1)-metric, eq. (5), because we could
only perform unweighted graph partitioning due to the absence of this feature.
We intend to add this feature in a next version of Mondriaan.
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